企业应用AI方案有哪些 大模型项目野蛮生长包含哪些潜在问题?

来源:星际派

企业应用AI方案有哪些?

一般来说,企业应用 AI 有几种方案。最简单的一种是直接接入具有 AI 能力的标准化 API,这种模式只能提供简单的 AI 能力,无法覆盖复杂的智能化需求;第二种是整体定制 AI 解决方案,这种方案需要产生高额的定制费用与专家成本,是最不经济划算的一种;第三种是自己进行 AI 开发,这种最为贴近企业真实需求,但会导致开发出的模型不够标准化,与业界领先水平具有差距,并且也要求企业具备 AI 开发经验与相关组织架构。

大模型项目野蛮生长包含哪些潜在问题?

1.过分聚焦大模型参数和数据集测试结果。

1700 亿参数的 GPT-3,将大模型正式拉到了千亿参数规模。随后大模型的参数比拼不断升级,很快我们就见到了万亿参数规模的大模型。追求大模型的参数巨大化,曾经一度成为 AI 领域的主流,随后也引发了相当多的反思。一味追逐模型体积大、训练数据规模大,会导致模型很难在现实场景中进行部署,并且低质量的训练数据过多,很多时候会导致反向效果出现。

大模型领域另一个问题,是追逐在某项数据集测试中刷新纪录。以标准化数据集评判大模型能力当然无可厚非。但很多时候数据集测试是有诀窍的,可以进行针对性调优。一味关注测试结果,很可能导致大模型的实际应用效果不足。

2.技术创新过分“个性化”。

由于大模型领域的竞争激烈,并且工程路线其实比较单一,为了标明自己的大模型具有差异化,业界开始兴起了大模型的“微创新”热潮。一般做法是,提出自己是业界首个某某技术上的大模型。但这项技术是否具有说服力,是否有足够的实际应用价值,则可能要打上一些问号。而随着大家都是首个某某大模型,大模型的定义越来越复杂,评判标尺也越来越模糊。下游用户选择大模型的难度也随之加大。一定要强调自己是“首个”,导致大模型陷入了混乱的创新局面。

3.打着国产化的名号,进行大量重复投资。

业界另一项关于大模型的问题,是随着自主可控与国产化替代成为趋势,相关企业与科研机构开始大量进行重复的大模型投资。大模型国产化当然是合理且必要的。但不同企业、科研机构与不同项目、不同地区政策之间合作,容易造成大模型国产化项目处于较低水平且重复建设的发展模式中,反而降低了国产化的最终效果。

在种子问题之下,大模型的野蛮生长虽然并未结束,但已经显露出了某种枯竭。推动大模型从参数为中心向应用为中心转变,是目前阶段的核心问题。

关键词: 大模型项目 野蛮生长 企业应用 科研机构 大模型国产化

推荐

直播更多》

关闭

资讯更多》

焦点